Study Shows Changes in Great Plains’ Ogallala Aquifer

news image
Special Stories
21 Feb 2019 8:19 AM
[Dust storm approaching Stratford, Texas during the Dust Bowl of the 1930s. Photo credit: NOAA George E. Marsh Album] [NOAA by Michon Scott] The Ogallala Aquifer underlies parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. From wheat and cows to corn and cotton, the regional economy depends almost exclusively on agriculture irrigated by Ogallala groundwater. But according to the Fourth National Climate Assessment (NCA4), producers are extracting water faster than it is being replenished, which means that parts of the Ogallala Aquifer should be considered a nonrenewable resource. The map below shows changes in Ogallala water levels from the period before the aquifer was tapped to 2015. Declining levels appear in red and orange, and rising levels appear in shades of blue. The darker the color, the greater the change. Gray indicates no significant change. Although water levels have actually risen in some areas, especially Nebraska, water levels are mostly in decline, namely from Kansas southward. In the early twentieth century, farmers converted large stretches of the Great Plains from grassland to cropland. Drought and stress on the soils led to the 1930s Dust Bowl. Better soil conservation and irrigation techniques tamed the dust and boosted the regional economy. In 2007, the market value from the Ogallala region's agricultural products totaled roughly $35 billion. However, well outputs in the central and southern parts of the aquifer are declining due to excessive pumping, and prolonged droughts have parched the area, bringing back Dust Bowl-style storms, according to the NCA4. The Agriculture chapter of NCA4 describes the risks and opportunities for resilience across the Ogallala region:  "Recent advances in precision irrigation technologies, improved understanding of the impacts of different dryland and irrigation management strategies on crop productivity, and the adoption of weather-based irrigation scheduling tools as well as drought-tolerant crop varieties have increased the ability to cope with projected heat stress and drought conditions under climate change. However, current extraction for irrigation far exceeds recharge in this aquifer, and climate change places additional pressure on this critical water resource." Edited for WeatherNation by Meteorologist Mace Michaels
All Weather News
More
Heavy Snow Lingers in New England Saturday

Heavy Snow Lingers in New England Saturday

Snow blew through much of the Northeastern Un

7 Feb 2026 1:05 PM
Extreme Cold to Impact Millions this Weekend

Extreme Cold to Impact Millions this Weekend

A sharp surge of Arctic air is set to spill i

7 Feb 2026 11:00 AM
Record Heat Moves from West to Midwest

Record Heat Moves from West to Midwest

Friday more records fell in Montana with hig

7 Feb 2026 10:00 AM
California Snow Pack Drops After Dry January

California Snow Pack Drops After Dry January

Following a surge of wet storm systems in Dec

7 Feb 2026 9:55 AM
Big Game Forecast

Big Game Forecast

The championship of the National Football Lea

7 Feb 2026 9:50 AM
Another Cold Night for Residents of the Southeast

Another Cold Night for Residents of the Southeast

Following a historic winter storm last weeken

6 Feb 2026 3:15 AM
Thousands of Customers Still Remain Without Power

Thousands of Customers Still Remain Without Power

While it has now been about a week since a ma

3 Feb 2026 5:40 PM